Tăng tốc khối lượng công việc suy luận bằng AI với GPU NVIDIA A30

GPU NVIDIA A30 được xây dựng trên Kiến trúc NVIDIA Ampere mới nhất để tăng tốc khối lượng công việc đa dạng như suy luận AI trên quy mô lớn, đào tạo doanh nghiệp và các ứng dụng HPC cho các máy chủ mainstream trong trung tâm dữ liệu. GPU A30 PCIe kết hợp các lõi Tensor thế hệ thứ ba với bộ nhớ HBM2 lớn (24 GB) và băng thông bộ nhớ GPU nhanh chóng (933 GB / s) trong một thiết kế nhỏ gọn low profile và năng lượng thấp (tối đa 165 W).

NVIDIA A30 hỗ trợ một loạt các lựa chọn toán học:

  • double-precision (FP64)
  • single-precision (FP32)
  • half-precision (FP16)
  • Brain Float 16 (BF16)
  • Integer (INT8)

Nó cũng hỗ trợ các cải tiến như Tensor Float 32 (TF32) và Tensor Core FP64, cung cấp một bộ tăng tốc duy nhất để tăng tốc mọi khối lượng công việc.

Hình 1 cho thấy TF32, có phạm vi FP32 và độ chính xác là FP16. TF32 là tùy chọn mặc định trong PyTorch, TensorFlow và MXNet, vì vậy không cần thay đổi mã để tăng tốc độ trên Kiến trúc NVIDIA Volta thế hệ mới nhất.

TF32 và các phân vùng khác ở số bit
TF32 và các phân vùng khác ở số bit

Một tính năng quan trọng khác của A30 là khả năng Multi-Instance GPU (MIG). MIG có thể tối đa hóa việc sử dụng GPU trên các khối lượng công việc lớn đến nhỏ và đảm bảo chất lượng dịch vụ (QoS). Một A30 duy nhất có thể được phân vùng tối đa bốn phiên bản MIG để chạy bốn ứng dụng đồng thời, mỗi ứng dụng được cách ly hoàn toàn với đa xử lý trực tuyến (SM), bộ nhớ, bộ đệm L2, băng thông DRAM và bộ giải mã.

Về mặt kết nối, A30 hỗ trợ cả PCIe Gen4 (64 GB / s) và NVLink thế hệ thứ ba tốc độ cao (tối đa 200 GB / s). Mỗi A30 có thể hỗ trợ một kết nối cầu NVLink với một thẻ A30 liền kề. Bất cứ nơi nào tồn tại một cặp thẻ A30 liền kề trong máy chủ, cặp này phải được kết nối bằng cầu NVLink kéo dài hai khe PCIe để có hiệu suất tốt nhất và cấu trúc liên kết cầu cân bằng.

NVIDIA T4 NVIDIA A30
Design Small Footprint Data Center & Edge Inference AI Inference & Mainstream Compute
Form Factor x16 PCIe Gen3
1 slot LP
x16 PCIe Gen4
2 Slot FHFL
1 NVLink bridge
Memory

16GB GDDR6

24GB HBM2
Memory Bandwidth​ 320 GB/s 933 GB/s
Multi-Instance GPU No support Up to 4
Media Acceleration 1 Video Encoder 2 Video Decoder 1 JPEG Decoder 4 Video Decoder
Fast FP64 No Yes
Ray Tracing Yes No
Power ​ 70W 165W

 

Ngoài những lợi ích phần cứng được tóm tắt trong Bảng 1, A30 có thể đạt được hiệu suất cao hơn trên mỗi đô la so với GPU T4. A30 cũng hỗ trợ các giải pháp ngăn xếp phần mềm end-to-end:

  • Thư viện
  • Các khung học tập sâu được tăng tốc bằng GPU như PyTorch, TensorFlow và MXNet
  • Các mô hình học sâu được tối ưu hóa
  • Hơn 2.000 ứng dụng HPC và AI, có thể nhận được từ NGC

Phân tích hiệu suất

Để phân tích sự cải thiện hiệu suất của A30 so với T4 và CPU, một thử nghiệm đã được thực hiện với việc đánh giá sáu mô hình từ MLPerf Inference v1.1 với các bộ dữ liệu:

  • ResNet-50 v1.5 (ImageNet)
  • SSD-Large ResNet-34 (COCO)
  • 3D-Unet (BraTS 2019)
  • DLRM (1TB Click Logs, offline scenario)
  • BERT (SQuAD v1.1, seq-len: 384)
  • RNN-T (LibriSpeech)

Bộ tiêu chuẩn MLPerf bao gồm một loạt các trường hợp sử dụng suy luận, từ phân loại hình ảnh và phát hiện đối tượng cho đến các khuyến nghị và xử lý ngôn ngữ tự nhiên (NLP).

Hình 2 cho thấy kết quả so sánh hiệu suất của A30 với T4 và CPU trên khối lượng công việc suy luận AI. A30 nhanh hơn khoảng 300 lần so với CPU cho phép suy luận BERT.

So với T4, A30 mang lại tốc độ hiệu suất gấp khoảng 3-4 lần để suy luận bằng cách sử dụng sáu kiểu máy. Việc tăng tốc hiệu suất là do kích thước bộ nhớ lớn hơn A30. Điều này cho phép kích thước lô lớn hơn cho các mô hình và băng thông bộ nhớ GPU nhanh hơn (gần 3 lần T4), có thể gửi dữ liệu đến các lõi tính toán trong thời gian ngắn hơn nhiều.

So sánh hiệu suất của A30 so với T4 và CPU sử dụng MLPerf. CPU: 8380H (không gửi trên 3D-Unet)
So sánh hiệu suất của A30 so với T4 và CPU sử dụng MLPerf. CPU: 8380H (không gửi trên 3D-Unet)

Ngoài suy luận AI, GPU A30 có thể đào tạo trước nhanh chóng các mô hình AI như BERT Large với TF32, cũng như tăng tốc các ứng dụng HPC bằng cách sử dụng FP64 Tensor Cores. A30 với Lõi Tensor TF32 cung cấp hiệu suất cao hơn gấp 10 lần so với T4 mà không yêu cầu bất kỳ thay đổi nào trong mã của bạn. Chúng cũng cung cấp khả năng tăng gấp 2 lần với độ chính xác hỗn hợp tự động, mang lại mức tăng thông lượng tổng hợp 20 lần.

Bộ giải mã phần cứng

Trong khi xây dựng phân tích video hoặc đường dẫn xử lý video, có một số hoạt động phải được xem xét:

  • Tính toán các yêu cầu cho mô hình của bạn hoặc các bước tiền xử lý. Điều này liên quan đến Tensor Cores, GPU DRAM và các thành phần phần cứng khác giúp tăng tốc các mô hình hoặc các nhân tiền xử lý khung.
  • Mã hóa luồng video trước khi truyền. Điều này được thực hiện để giảm thiểu băng thông cần thiết trên mạng. Để tăng tốc khối lượng công việc này, hãy sử dụng bộ giải mã phần cứng NVIDIA.
Số luồng đang được xử lý trên các GPU khác nhau
Số luồng đang được xử lý trên các GPU khác nhau

A30 được thiết kế để tăng tốc phân tích video thông minh (IVA) bằng cách cung cấp bốn bộ giải mã video, một bộ giải mã JPEG và một bộ giải mã luồng quang. Để sử dụng các bộ giải mã này cùng với các tài nguyên máy tính để phân tích video, hãy sử dụng NVIDIA DeepStream SDK, cung cấp bộ công cụ phân tích phát trực tuyến hoàn chỉnh để hiểu video, âm thanh và hình ảnh dựa trên AI.

Tiếp theo?

Là đại diện cho nền tảng AI và HPC end-to-end mạnh mẽ nhất cho các trung tâm dữ liệu, A30 cho phép các nhà nghiên cứu, kỹ sư và nhà khoa học dữ liệu cung cấp kết quả trong thế giới thực và triển khai các giải pháp vào sản xuất trên quy mô lớn. Với NVIDIA GPU A30, các doanh nghiệp có thể triển khai AI và HPC linh động và hiệu quả trên nền tảng Data Center mà lại tối ưu hơn về chi phí đầu tư, TCO…

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Bài viết liên quan

Trả lời

Email của bạn sẽ không được hiển thị công khai.